If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+6x-30=0
a = 6; b = 6; c = -30;
Δ = b2-4ac
Δ = 62-4·6·(-30)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{21}}{2*6}=\frac{-6-6\sqrt{21}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{21}}{2*6}=\frac{-6+6\sqrt{21}}{12} $
| 2x=7(2x-12)=28 | | 4q2–8q–6=0 | | 7-7x=4x-26 | | 2*x+14=4*x | | 6x+3=49+3x | | 4π=s+5π | | 8x-82+90+x=180 | | -11-5a=6(5a+40 | | x*2=x+4 | | 4(x-7)^2=-160 | | x2=x+4 | | -4+13x=-2+10+5x | | 5z+4z=8z+1 | | x^2-13x+4=-6x-2 | | -12x+20=18x | | 5x+1=16+2x | | 0=42-x^2-x | | 5x-(14-x)=-30-10x | | 0=2x^2+16x+36 | | 3^(-x+2)=67 | | 8+7x=-7x-118 | | 4(x-7)^2+160=0 | | x-3÷5=x-3 | | 10(2x+8)=140 | | 3x^2+70x-125=0 | | 8+7x=7x-118 | | 6.25x=8.57 | | 7+36n+5^2=0 | | 180=2x-44.8+62.8 | | x2-5x=-2x | | 16x^2+12x+2=0 | | X/27=8/36=z/63 |